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This article is a response to an article written by Wang and Ma "An Examination of 

Plausible Score Correlation from the Trend in Mathematics and Science Study", published 

in the Athens Journal of Education. The purpose of this paper is to address issues with 

Wang’s and Ma’s suggestion to use analysis method for correlating plausible values from 

TIMSS. The paper reviews the design of international large-scale assessments, and TIMSS 

in particular, and its implications for data analysis in regard to the application of Canonical 

Correlation Analysis for calculating association between two sets of plausible values, as 

proposed by Wang and Ma. The conclusion is that, given the design of TIMSS and other 

large-scale assessments, the method proposed by Wang and Ma is not appropriate for 

correlating two sets of plausible values because they are not multivariate measures as the 

suggested method would assume. Some other methodological issues related to the overall 

analysis approach used by Wang and Ma is discussed as well. 
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Introduction 

 

This paper is a response article that addresses some issues with an article by 

Wang and Ma (2016) published in the Athens Journal of Education. The original 

article published by the aforementioned authors represents an attempt to address 

methodological issues when correlating two sets of plausible values (PVs) from 

the Trends in International Mathematics and Science Study (TIMSS) that the 

authors claim to exist. 

The main argument of the authors is that if two sets of PVs are used in 

correlation analyses of TIMSS data with the current approach the study uses, this 

can inflate the chance for making Type I error due to the non-additive nature of the 

correlation coefficients. The solution of this assumed issue the authors suggest is 

Canonical Correlation Analyses (CCA) that can accommodate for the multidimen-

sionality of the signals and avoid the dependency on the coordinate system in 

which the variables are described (Wang & Ma, 2016). However, most of the 

assumptions the authors have do not reflect the design and the methodology 

TIMSS, as well as other large-scale assessments (ILSA), as well as the analytical 

strategy and methods it uses to produce unbiased estimates from any statistical 

analysis being employed. 

The next section provides a review of the literature on generation of PV sin 
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general and as they are used in TIMSS (as well as in other ILSA), what is the 

necessity for their derivation as proficiency scores, what they are, how they are 

derived and how they shall be used in analysis reflecting their nature and statistical 

theory that stands behind their derivation. In addition, the literature review 

presents the sampling procedures and the derivation of the sampling weights 

which must be included in the computation of any estimates using ILSA data. This 

is necessary because Wang and Ma (2016) do not address the important issues of 

the unequal probabilities of selection and the subsequent issue of sampling 

variance when computing estimates with TIMSS data. The literature review ends 

with an overview of the CCA, its assumptions and application in situations where 

other correlation methods are not appropriate. The purpose of this review is to add 

more clarity on the design of TIMSS and ILSA in general, and thus, justify the 

current approaches in using them in analysis. These provide the background 

against which the claims in Wang’s and Ma’s (2016) article will be discussed in 

the last, discussion, section. 

 

 

Literature Review 

 

TIMSS is the successor of other ILSA conducted prior 1990s: the First 

International Mathematics Study (or FIMS, conducted in 1964), the First 

International Science Study (or FISS, conducted in 1970-1971). These studies, 

conducted by the International Association for the Evaluation of Educational 

Achievement (IEA) had a follow-up cycles in the period 1980-1984, the Second 

International Mathematics Study (SIMS) and the Second International Science 

Study (SISS) (IEA, n.d.). TIMSS, initially named as Third International 

Mathematics and Science Study, was the third cycle of both mathematics and 

science studies where they were conducted jointly (Mullis et al., 1997). In 1999 

the IEA replicated TIMSS and named it as TIMSS-R or TIMSS-Repeat (Mullis et 

al., 2000), and due to the decision of conducting the study in regular cycles, later 

"third" was changed to "trends in". 

TIMSS, as well as other studies, used the methodological developments 

originating in the National Assessment of Educational Progress (NAEP) 

conducted in US, extending these advancements (Rutkowski, Gonzalez, Joncas, & 

von Davier, 2010). Due to student fatigue, attrition and logistics of ILSA there was 

a need to find a solution to make possible carrying out assessment on a large scale 

to cope with the aforementioned limitations – not everyone can be tested using 

every single item. One such solution was the use of Multiple Matrix Sampling 

(MMS). MMS, used in many studies, is different than subjects or examinees 

sampling where the subjects (usually students) are selected from the population of 

interest. In MMS the measures on which the subjects are tested or surveyed on are 

sampled from a universe of interest, i.e. part (a sample) of the total assessment 

(Rutkowski, Gonzalez, von Davier, & Zhou, 2014). This facilitates the testing of 

the sampled subjects in broad content domains like mathematics or science where 

a large number of items are needed to have a reliable measure in the domain of 

interest. In addition, TIMSS has several content sub-domains in both mathematics 
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and science, but also cognitive sub domains in both areas. This would lead to 

estimated testing time as of more than 10 hours in TIMSS 2007, for example 

(Rutkowski et al., 2014). Thus, in TIMSS 2007 the total of 429 mathematics and 

science items were distributed in 14 blocks, each containing unique set of items, in 

each content domain (mathematics and science), rotated across 14 test booklets, 

each containing two mathematics and two science blocks. One of the mathematics 

blocks and one of the science blocks in each booklet was repeated in every next 

booklet, so that a link through common blocks across the booklets was ensured. 

This way, the testing time and logistic demands of the entire study are decreased, 

making it possible to conduct such a large study across a myriad of countries at the 

same time (Rutkowski et al., 2014). This way, no tested subject is taking every 

single item, but a sample of items which removes the burden from the examinees 

and is a cost-effective solution. Early developments of this technique have proven 

that group means appear to be more consistent than a sample of tested subjects 

taking all items. Currently there are different implementations of the MMS, one of 

them, also used in TIMSS is the Block Incomplete Booklet (BIB) set of designs 

(Rutkowski et al., 2014). 

The use of MMS saves a lot of efforts and minimizes the testing time for the 

students participating in ILSA. However, this brings a serious challenge when 

estimating the student proficiency. Following the description of the MMS 

provided above,  

 

The relatively small number of items per block and the relatively small 

number of blocks per test booklet mean that the accuracy of measurement at 

the individual level of these assessments is considerably lower than is the 

level of accuracy common for individual tests used for diagnosis, tracking, 

and/or admission purposes(von Davier, Gonzalez, & Mislevy, 2009, p. 11). 

 

Traditional methods for estimating the proficiency of tested subjects would 

yields "biased or inconsistent variance estimates of population parameters" 

(Rutkowski et al., 2010, p. 145). As stated previously, none of the sampled student 

takes all items, but (as for TIMSS 2007 example given above) two mathematics 

blocks and two science blocks containing unique items that do not appear in any 

other block; the students answer only the items presented to them and for the rest 

of the items student answers are missing by design. However, items differ in their 

characteristics, difficulty being the most important. Hence, percent correct for the 

items a student faced will not be the appropriate method because it limits 

comparability of results – the score will depend on the particular set of items a 

particular student receives (Mirazchiyski, 2013). The use of Item Response Theory 

(IRT) was more and more needed due to the use of MMS in assessments 

(Rutkowski et al., 2014). The traditional IRT approaches that use Marginal 

Maximum Likelihood (MML) and Expected a Posteriori (EP), however, are not 

appropriate solutions as well. These estimation techniques produce point estimates 

optimized for individual-level, but not group level estimation (von Davier et al., 

2009). Several scholars developed group level models for estimating latent traits 

stemming from measurements using MMS. NAEP uses these models since its 
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assessment in 1983/84 to find a tractable solution for estimating the standard 

errors. The use of population models and their applications in cases of MMS 

together with IRT is commonly referred to "plausible values", although often other 

names are used as well (Rutkowski et al., 2014). The derivation of PVs from 

population models relies on Rubin’s multiple imputation methods developed in the 

period between late 1970s to late 1980s. These models impute the tested subjects’ 

scores for references on population level (Rutkowski et al., 2014). 

Latent traits (such as intelligence or reading skills among many other) are not 

directly observable (von Davier, 2014) and in ILSA (and not only) are treated as 

missing (Rutkowski et al., 2010). Instead observing the latent traits directly, it is 

possible to observe the responses of examinees to tasks they face as indicators of 

these under lying traits. It is necessary to know, however, how these observable 

indicator variables relate to the latent trait. ILSA use IRT involving latent 

regression of the latent (unobservable) proficiency variable on number of predictor 

variables. This approach includes the information of all observable variables and 

follows the models of imputing data developed in the 1980s and 1990s. This 

means that the conditional distribution of the latent variable depends on the values 

of the observed variables, assuming that the missing values are missing at random 

(von Davier, 2014). As von Davier points out, "100% of the student proficiency 

data is imputed using a specialized imputation model based on statistical 

procedures that are tailored to incorporate both cognitive response data and student 

background data" (von Davier, 2014, p. 184). ILSA utilize latent regression 

models which provide Expected a Posteriori (EAP) estimates of posterior variance 

of the measured ability. These latent regression models are actually an extension 

of the multiple group IRT model. What they provide is a "different conditional 

prior distribution for each respondent’s proficiency based on a set of predictor 

variables" (von Davier, 2014, p. 184). Although the total number of achievement 

items in each ILSA is large, it is still limited for each student due to MMS. Thus, it 

is complemented with the items from the background questionnaires, applying 

Rubin’s multiple imputation approach to impute the answers of the items the 

student did not face and create student ability distribution for the entire population 

or sub-populations of interest (Rutkowski et al., 2010). It may not be immediately 

obvious, but PVs "add exactly the right amount of variability to make the 

distribution of the PVs in the group match the distribution of the true values in the 

group" (von Davier et al., 2009, p. 35). The foundations of the PVs methodology, 

its theoretical rationale, foundations and mathematical proof are laid out in 

Mislevy (1991) and Mislevy, Beaton, Kaplan and Sheehan (1992). An overview of 

what PVs are for the non-technical reader is provided by von Davier et al. (2009). 

When it comes to the actual application of the population modeling and 

imputing the missing data along with the latent regression models used in ILSA, 

each study has its own specifics, although many things in common as well. The 

presentation here continues with a description of the TIMSS 1995 proficiency 

scaling methodology because this is the study and cycle the authors of the original 

article (Wang & Ma, 2016) used. The subsequent cycles of TIMSS use the same 

approach and steps for scaling the cognitive data, although some details may 

differ. 
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In TIMSS 1995 first a subsample of 600 students is drawn from each country, 

forming an "international calibration samples" that are about equal in number of 

selected students. These samples were drawn systematically with Probability 

Proportional to the Size (PPS) of the Primary Selection Units (PSU) (i.e. schools) 

using their overall weights as measure of size. This led to equal selection 

probabilities within the national samples to draw the calibration samples within 

each country, thus each country was given an equal weight in estimating the item 

parameters in the next step(Adams, Wu, & Macaskill, 1997). The scaling model 

applied was a generalization of the more basic unidimensional model. In addition, 

a multivariate linear model imposed on the population distribution. The item 

parameters were estimated using the international sample. Then the model was fit 

in each country using fixed item parameters obtained in the previous step (Adams 

et al., 1997). The population model uses the item response model which is a 

conditional model describing the process of generating the responses conditional 

on the latent variable. The derivation of conditioning variables is done using 

background information to form a vector included in the latent regression model as 

a predictor. Then the five PVs are derived for each student by making five random 

draws from the formed marginal posterior latent distribution (Adams et al., 1997). 

The chapter on the scaling methodology and procedures in the TIMSS 1995 

Technical Report (Adams et al., 1997) provides more comprehensive technical 

and detailed information. The corresponding chapter in the TIMSS 2007 Technical 

Report (Foy, Galia, & Li, 2008) provides more reader-friendly description of the 

scaling procedures. 

The important detail from the review of the methodology and procedures of 

obtaining the PVs as proficiency scores that has to be stressed is that a set of PVs 

for each subject area (e.g. overall science) or content sub-domain (e.g. chemistry) 

or cognitive sub-domain (e.g. applying) is a set of variables representing 

unidimensional measure of the same construct of interest. As explained above, a 

set of PVs represent five random draws from a marginal posterior latent 

distribution. That is, each one of the PVs in a set (e.g. overall science score) 

represents a measure on the same construct that includes information from the 

same cognitive items and the same background variables that are used to construct 

the marginal posterior distribution they are drawn from. 

As stated earlier, the procedures of obtaining PVs follow the theory of 

multiple imputation using the information from the background variables as 

predictors in a latent regression model. Rubin (1987) provides a theoretically and 

methodologically sound background on the imputation techniques, models and 

analysis with the resulting imputed data sets. As Mislevy (1993) notes, Rubin’s 

approach of imputing missing data multiple times creates data sets where "each 

missing variable is replaced by a draw from its predictive distribution, conditional 

on the observed data" (Mislevy, 1993, p. 79). The generation of PVs follows the 

same logic, as already described in the previous paragraphs. The methods for 

analysis of imputed data sets were specified and complemented in subsequent 

publications (e.g. Little & Rubin, 1987, 2002). The five randomly drawn PVs for 

each student vary in their values as a result of the multiple imputation. When it 

comes to analysis of PVs, five estimates of any statistics are computed with each 
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of the five PVs (or any measure that has been imputed multiple times) and they are 

all different. This is a result of what is called "imputation variance" or "imputation 

error" (Foy et al., 2008) which reflects the measurement error stemming from the 

use of MMS (Foy et al., 2008). All analyses that include PVs have to follow the 

approach of performing analyses with multiple imputation variables. Rubin (1987) 

and (Little & Rubin, 1987, 2002) provide a set of rules in order to combine the 

parameter estimates and compute the variance associated with the multiple 

imputation of measures. These rules of combining the estimates and compute the 

imputation variance have found strong empirical support in various studies as in 

Schafer (1999) and in the case of PVs in various papers, as in von Davier et al. 

(2009) and Rutkowski et al. (Rutkowski et al., 2010). Following the theoretical 

developments of Rubin (1987) and Little an Rubin (1987, 2002), any analysis of 

TIMSS 1995 involving PVs will perform the computations five times (once with 

each PV) and the results of these computations will be averaged to obtain an 

unbiased estimate of student performance (Gonzalez, 1997). Formula for 

computing the imputation variance in TIMSS and ILSA in general are provided by 

Foy et al. (2008) and (von Davier et al., 2009), to name just few, and the technical 

report of each ILSA provides such formulas reflecting the specifics of the study. 

The same approach is used not only in TIMSS, but in other ILSA, such as PIRLS, 

ICCS, ICILS and PISA, and are implemented in statistical software which will be 

discussed later in the paper. 

The imputation variance, however, is not the only source of error in ILSA. 

Besides the sample of items from the universe of all possible items that can 

measure given construct, ILSA also use sample of students from the target 

population for which the construct is measured. The sampling design of TIMSS 

1995 is a two-stage stratified cluster sampling design and is done separately for 

each population of interest. In the first stage in each participating country 150 

schools where students in a particular population of interest study are sampled 

with PPS. Schools are the PSUs. The second stage of sampling picks intact 

classrooms within the sampled schools (clusters). Usually one intact classroom is 

sampled, although some participated countries preferred two. In some countries a 

third stage (sampling students within the selected classrooms) was added, but these 

were exceptional cases. Due to the clustering effect of selecting intact classrooms 

(students in the same classroom tend to be more alike), intraclass correlation (ICC, 

a measure of similarity within a cluster) and the size of the classroom, along with 

the desired standard error from the sample, were taken into account when 

calculating the desired sample size within each country (Foy, Rust, & Schleicher, 

1996). A stratification (grouping of schools according an attribute) was applied in 

most countries to improve sampling efficiency, making estimates more reliable, to 

apply different sample design to specific groups of schools or regions, and to 

ensure adequate representation of specific groups in the target population. Explicit 

stratification would construct independent lists of schools on an attribute. Implicit 

stratification would use the same list of schools where schools are sorted by the 

attribute (Foy et al., 1996). In the first stage of sampling, schools in the sampling 

frame (or frames, in case of explicit stratification) are sorted by their measure of 

size (MOS) (number of students in the target population). A sampling interval is 
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defined by dividing MOS by the number of schools to be sampled. The first school 

is selected by choosing a random number between 1 and the number representing 

the sampling interval. Thus, the number obtained represents the MOS of the first 

school being selected. Adding the sampling interval to this number would give the 

number of the second sampled school, and so on. If an implicit stratification is 

applied, the sampling of schools will reflect the implicit strata within which the 

schools are sorted by their MOS too. At the second sampling stage one or two 

(depending on the countries preferences) intact classes were sampled (Foy et al., 

1996). 

Not only TIMSS, but all other ILSA as well, follow the same or similar 

sampling strategy. This kind of sampling (PPS) is rather different than the Simple 

Random Sampling (SRS). The difference is that with SRS every student is 

selected with probability that is equal to the probability of selecting any other 

student (Rutkowski et al., 2010). On the contrary, as presented above, in TIMSS 

(as well as all other ILSA), do not use SRS. The application of PPS sampling 

means that each sampled school, hence classroom and student within it, are 

sampled with different probability that depends on the number of students in the 

target grade attending the schools. Then different students in the sample will not 

represent the same number of students in the population they were selected from. 

In addition, different countries chose different stratification variables in the 

sampling process to satisfy their research demands (Foy, 1997). This is an 

additional challenge for analyzing data that stems from TIMSS or other ILSA. 

Sampling weights in ILSA are introduced to accommodate for the sampling with 

different probabilities to ensure that certain groups in the population of interests 

are not overrepresented in the sample (Rutkowski et al., 2010). The TIMSS 1995 

weighs calculation was done in three steps. First, calculating the school weights, 

adjusting for the school non-response independently for each design domain or 

explicit stratum. Second, calculating the classroom weight adjusting for the non-

response of the classroom. When only one classroom was sampled, no classroom 

adjustment was necessary. Third, computing the sampling weight of the 

participating students adjusting for their non-response. The final weight for each 

student was added as product of the three intermediate weights from the previous 

steps. The weights computed in the first three steps before their non-response 

adjustments are computed as the inverse probabilities of selection (for the school, 

class and student) (Foy, 1997). 

The TIMSS, or any other ILSA, sampling design provides country samples in 

ILSA representative for the population they have been drawn from (Foy, 1997). 

Not using the sampling weights in analyzing ILSA data leads to giving more 

importance on some students due to the sampling design. Relevant example in this 

regard is provided by Rutkowski et al. (2010) who demonstrate how the sampling 

of students from different school types biases the results on population level when 

weights are not used to adjust for the number of students in the population each 

one of the sampled students represents. 

An important issue in ILSA is the variance estimation to compute the standard 

errors due to the stratified multi-stage sampling. The standard procedures and 

formulas for computing the standard errors do not apply to ILSA because the 
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sampling strategy does not rely on SRS. The IEA and OECD studies rely on 

replication techniques to estimate the variance. TIMSS, in particular, uses 

Jackknife Repeated Replication (JRR). When analyzing ILSA data, replication 

techniques should be used for all sampling variability estimates, which are the 

sampling errors, to obtain unbiased estimates (Rutkowski et al., 2010). The 

necessity of using replication methods for sampling variance estimation stems 

from the sampling strategy that uses unequal probability to sample schools 

teaching students in a target population to obtain efficient and cost-effective 

samples. The JRR variation in TIMSS 1995 assumes that PSUs (schools) can be 

paired according to the sampling design, forming pseudo-stratums (pairs of 

schools) to estimate the sampling variance. This approach appropriately reflects 

the combined effect of the within- and between-school contribution to the 

sampling variance (Gonzalez & Foy, 1997). The procedure is as follow. First, 

sampling zones (paired schools) are formed. The sampling zones are formed in the 

same order in which the schools were sampled. With 150 sampled schools, 75 

zones are formed. When more schools are sampled, sometimes schools were 

combined before forming a sampling zone. Second, the variance is estimated in 

each sampling zone by setting the weight of one of the paired schools to 0 and 

doubling the weight of the other school. The estimation is done 75 times plus once 

with the full weight. At the end, the variance is estimated by combining the results. 

More details and the formula for combining the estimates to produce the sampling 

variation of an estimate is provided by Gonzalez and Foy (1997). This procedure 

is rather different than standard methods of estimating the error under SRS. 

Rutkowski et al. (2010) provide a clear example what are the consequences when 

replication is not applied using TIMSS 2007 data. 

When using PVs, each estimate is computed five times (once with each PV) 

and within each JRR zone. The standard error of an estimate using PVs is 

computed using both the sampling and imputation variance components. Both of 

these components are important, omitting any of them can produce biased result. 

Pedagogical examples are provided by Rutkowski et al. (2010). Formulas for 

combining the estimated imputation and sampling variance, as well as the total 

standard error of an estimate, are provided for each ILSA reflecting the specifics 

of the study and even the study’s cycle. Such can be found in Foy et al. (2008) and 

Schulz (2011), for example. 

The systematic publications on correlating two sets of variables begin in 1936 

with a publication of Hotelling (1936), although some elements were developed 

earlier by Bravais, Galton, Pearson, Yule and others (Hotelling, 1936). Hotelling 

(1936) was concerned with issues in correlating two sets of variables representing 

multidimensional measures and suggests the name "canonical correlations". Later, 

this kind of analysis was referred to mainly as Canonical Correlation Analysis 

(CCA). Borga (2001), also cited by Wang and Ma (2016), defines CCA as "a way 

of measuring the linear relationship between two multidimensional variables" 

(Borga, 2001, p. 2), that is, each set of variables would represent different 

measures, directly observable or not. Härdle and Simar (2007) define it as 

technique for analyzing the association of two data sets based on projections where 

"an index (projected multivariate variable) that maximally correlates with the 
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index of the other variable" (Härdle & Simar, 2007, p. 321). Similarly, Borga 

(2001) defines the CCA as "finding two sets of basis vectors, one for x and the 

other for y, such that the correlations between the projections of the variables onto 

these basis vectors are mutually maximized" (Borga, 2001, p. 2). Thus, CCA "is 

based on linear indices, i.e., linear combinations of the random variables" (Härdle 

& Simar, 2007, p. 321). The most important thing to note about CCA is that it is a 

method of correlating two multidimensional sets of variables, i.e. the variables in 

each set are measures that quantify different properties of the objects. The next 

section will reiterate this when discussing the CCA as a method for correlating 

PVs in TIMSS, suggested by Wang and Ma (2016). 

 

 

Discussion 

 

Wang and Ma (2016) raised concerns about the calculation of correlation 

coefficients as computed in TIMSS when two sets of PVs are used. The concerns 

were raised due to the non-additive nature of correlation coefficients and 

suggested the use of canonical correlation instead to reduce the risk of making 

Type I error. However, as already clarified in the literature review, a set of 

Plausible Values (PVs) does not contain multiple different measures on multiple 

different latent traits as CCA would assume. The important details that needs to be 

reiterated here is that set of five PVs in any subject area, content or cognitive 

subdomain is derived as five random draws from the same marginal posterior 

distribution (Adams et al., 1997), i.e. each PV in a set of PVs (e.g. overall 

mathematics) represents the same measure, carrying out the information obtained 

using the same items, their IRT parameters, conditioned on the same background 

variables. Hence, it is the same trait presented as five different variables (PVs), and 

not five different latent traits in five different variables. Being imputed variables, 

all rules that apply to analysis of multiply imputed data sets (see Little & Rubin, 

2002) apply when working with PVs regardless of the analysis type. As Mislevy 

(1993) notes, this situation resembles the situation of having multiple unbiased and 

conditionally independent indicator variables, but only on the surface. Further, he 

demonstrates the pitfalls of using PVs as unbiased and conditionally independent 

indicators of a latent variable, producing incorrect estimates. Given the answer of 

the third research question Wang and Ma (2016) have, the correct approach for 

correlating the two sets of mathematics and science achievement PVs would be to 

correlate the first PV in mathematics with the first PV in science, the second PV in 

mathematics with the second PV in science, and so on, then averaging the obtained 

estimates to derive the final estimate of the correlation. The computation of the 

sampling and imputation variance and the final standard error of this coefficient 

would follow formulas which can be found in Foy et al. (2008). This kind of 

pairing will not allow underestimation of the correlation between the subjects. 

There are software products that are capable to do this tedious work with minimal 

effort from the side of the analyst. One such product is the IDB Analyzer, freely 

available from the IEA (IEA, 2016) where the correlation of two sets of PVs 

follows the routine described above. The standard error, in turn, is necessary to test 
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the statistical significance of the estimates. Another issue that deserves attention in 

regard to the sampling variance as component of the standard error is that there is 

no indication if the authors used any weights. As mentioned above, the sampling 

weights must be used to properly estimate the sampling variance. This issue is 

discussed further. 

The aforementioned issue is the main issue with Wang’s and Ma’s (2016) 

publication: CCA is not the appropriate method for analyzing ILSA data stemming 

from any study that uses the PVs methodology because each PV represents the 

same unidimensional latent trait, and not multiple dimensions of a latent trait or 

multiple traits as CCA assumes. Information on what PVs are and how to use them 

in analysis of student achievement, along with the literature sources was already 

provided by the literature review. 

There are other points of concern with the Wang’s and Ma’s (2016) article, as 

outlined below. 

First, on page 305 the authors provide a citation from Garcia (2010) saying 

that "One cannot add raw r values to compute an arithmetic average an r" (Garcia, 

2010, p. 2), but missed important information located few lines below where the 

author of the original publication adds that, 

"in order to compute  [that is, average correlation] individual r values have to 

be converted into additive quantities. Several techniques, each with their own 

assumptions and drawbacks, can be used: transcendental transformations, 

numerical expansions, weighted averages, or combination of techniques" 

(Garcia, 2010, p. 2). 

 

Further, the authors added a citation from Statsoft (2000) to reconfirm that, 

 

"Because the value of the correlation coefficient is not a linear function of the 

magnitude of the relation between the variables, correlation coefficients 

cannot simply be averaged" (StatSoft, 2000, p. 10). 

 

It is very strange, however, that the authors missed the next sentence that says that, 

 

"In cases when you need to average correlations, they first have to be 

converted into additive measures. For example, before averaging, you can 

square them to obtain coefficients of determination which are additive (as 

explained before in this section), or convert them into so-called Fisher z 

values, which are also additive." (StatSoft, 2000, p. 10). 

 

There is one important thing to note in the above citations, as well as with the 

sources as a whole: they consider a general case and do not pertain to analyzing 

multiple imputation data sets. 

Second, on page 307 the authors wrote that "After completing canonical 

correlation analyses, the results are merged with mathematics and science 

performance scores at the country level to address Question 3. The combined data 

set is attached in Appendix 1." 



Athens Journal of Education May 2019 

 

155 

Unfortunately, they do not provide any detail on how the CCA results were 

computed and merged to the TIMSS 1995 mathematics and science scores. The 

methodology of extracting information from variables to add it later to the same 

variables shall be explained: 1) why was it done, what was the purpose; and 2) 

how was it done. Also, besides the data, the aforementioned appendix should 

contain combined data and tables with the canonical correlations, as mentioned on 

page 309. However, there is no appendix to this article and these are not possible 

to inspect. 

Third, on page 307 the authors wrote that "The inclusion of canonical 

correlation as a predictor automatically assumes co-existence of mathematics 

achievement as an explanatory variable". It is quite unclear what is meant by this, 

especially how a statistical method can be included as a predictor. Probably they 

meant that the results of CCA were included as a predictor. However, as 

mentioned above, there is no information how the CCA results were merged with 

the scores. 

Fourth, on page 307 the authors added SPSS syntax to compute regression 

analysis, noting that it is a "simple SPSS application without involvement of 

complex Macro syntax on the variable dimension" (Wang & Ma, 2016, p. 309). 

As mentioned above, it is not clear how the canonical correlations were computed 

and included in the analysis this syntax uses. The provided syntaxis not only 

simple, it is oversimplified and does not take into account any of the design issues 

TIMSS 1995 has, as the JACKREGPV. SPSmacro provided by Foy, Arora and 

Stanco (2013) and recommended by Statistics Canada (2002) does. The syntax 

provided by Wang and Ma (2016) does not include any statement that weights the 

data using any of the weighting variables available in the TIMSS 1995 data and do 

not use the variance estimation methods as used in TIMSS (see Foy et al., 2008) to 

estimate the sampling variance and take it into account when computing the 

standard errors. In the discussion part of the paper, on page 309, the authors 

mention for the first time that the TIMSS uses multistage sampling. TIMSS, as 

well as other ILSA, uses sampling with probability proportional to the size of the 

schools. Thus, schools, and their students respectively, are sampled with different 

probabilities. To be able to produce estimates on population level, which is the 

purpose of TIMSS and any other ILSA, weights that account for the unequal 

probability of selection must be used. Due to the PPS sampling, if no weights are 

used, some students can have a disproportional impact on the estimates and the 

analysis can provide rather biased results, as demonstrated by Rutkowski et al. 

(2010). An additional issue is that with large samples, as in TIMSS, not using 

appropriate methods of variance estimation will underestimate the SE. This is 

probably the case with the strong and significant results the authors obtained in 

their study, not using any weight and their replication in the analysis. Given all of 

the above, the conclusion the authors make on page 309 that "the influence from 

complex sampling is washed out" (Wang & Ma, 2016, p. 309) along with the 

arguments is incorrect simply because weighting matters for all types of statistical 

estimates with ILSA data, including TIMSS. As per the use of design effect itself 

for estimating the sampling variance, it is largely discouraged in the recent years. 

There are different methods to compute the standard errors due to the clustering 
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effect of the sampling used in large-scale assessments, one of them being the 

design effect. It is an estimate of how large the effects of dependency among 

observations are, including clustering, on the sampling variance. Despite the ease 

of calculating design effects, they appear as rather crude estimates of the standard 

errors which actually appear to be inflated (Barron, 2000) and conservative 

compared to other methods (Stapleton, 2008). In addition, an empirical study 

conducted by Stapleton (2008) concludes that design effect are only appropriate 

for univariate statistics, when applied accurately. In contrast, using jackknifing to 

compute standard errors is much more precise (Barron, 2000). As Barron (2000) 

notes, the computation of jackknife estimates of standard errors has been difficult 

for secondary analysts. However, in recent years computers have become more 

powerful and software for using jackknifing is available. 

 

 

Conclusions 

 

The method for correlating sets of PVs suggested by Wang and Ma (2016) is 

an attempt to solve an alleged problem in analyzing TIMSS 1995 data. However, 

as this paper demonstrates, the authors do not take into account the assessment 

design of TIMSS 1995. This resulted in recommendation of analysis method that 

has assumptions and applications not relevant to analysis of PVs due to their 

specifics. Further, the actual application of the method ignores another important 

design issue, the complex sampling design of TIMSS 1995, and the necessary use 

of sampling weights. This is proven to have negative effects when conducting 

analyses with ILSA data regardless of the analysis method. 

The contemporary ILSA are tools for policy making in education. The 

decisions made from analysis results have an impact on the on the implementation 

of policies and reforms in education. It is a great responsibility of researchers using 

these data to apply appropriate analysis methods, taking into consideration the 

study design and nature of the measures. Otherwise, biased results presented to 

policy makers may lead to ineffective policies. 
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